Program to find cost of minimum spanning tree using Prim’s in C

/*
   Prism's Algorithm
   Created By: Pirate
*/

#include<stdio.h>
#include<conio.h>
int a,b,u,v,n,i,j,ne=1;
int visited[10]={0},min,mincost=0,cost[10][10];
int main()
{
            printf("*** SPANNING TREE USING PRIM'S ***\n");
            printf("Enter the number of nodes:");
            scanf("%d",&n);
            printf("Enter the adjacency matrix:\n");
            for(i=1;i<=n;i++)
            {
                        for(j=1;j<=n;j++)
                        {
                                    scanf("%d",&cost[i][j]);
                                    if(cost[i][j]==0)
                                    cost[i][j]=999;
                        }
            }
            visited[1]=1;
            printf("\n");
            while(ne<n)
            {
                        for(i=1,min=999;i<=n;i++)
                        {
                                    for(j=1;j<=n;j++)
                                    {
                                                if(cost[i][j]<min)
                                                if(visited[i]!=0)
                                                {
                                                min=cost[i][j];
                                                a=u=i;
                                                b=v=j;
                                                }
                                    }
                        }
                        if(visited[u]==0 || visited[v]==0)
                        {
                                    printf("\nEdge %d:(%d %d) cost:%d",ne++,a,b,min);
                                    mincost+=min;
                                    visited[b]=1;
                        }
                        cost[a][b]=cost[b][a]=999;
            }
            printf("\nMinimun cost=%d",mincost);
            getch();

}


Output














2 comments:

  1. This comment has been removed by a blog administrator.

    ReplyDelete
  2. This comment has been removed by a blog administrator.

    ReplyDelete

 

Pro

About